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In a recent paper we constructed an integrable generalization of the Toda law on the square lattice. We
construct other examples of integrable dynamics of Toda type on the square lattice, as well as on the triangular
lattice, as nonlinear symmetries of the discrete Laplace equations on square and triangular lattices. We also
construct the �-function formulations and Darboux-Bäcklund transformations of these dynamics.
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I. INTRODUCTION

The Toda lattice �1–3�

d2qm

dt2 = �me�mqm−1, �1�

where �mfm= fm+1− fm is the difference operator and qm�t� is
a dynamical function on a one-dimensional lattice, is one of
the most well-known integrable nonlinear lattice equations.
It describes the dynamics of a one-dimensional physical lat-
tice, the masses of which are subjected to an interaction po-
tential of exponential type. The infinite, finite and periodic
Toda lattice �1�, as well as its numerous extensions �4–12�,
have applications in various other physical and mathematical
contexts �13–19�.

Its integrability properties follow from the basic fact that
Eq. �1� is the compatibility condition for the following “Lax
pair” �20,21�:

Am�m+1 + Am−1�m−1 = Fm�m + ��m, �2�

d�m

dt
=

1

2
�Am�m+1 − Am−1�m−1� , �3�

where � is the constant eigenvalue of the self-adjoint three-
point scheme �2�, the eigenfunction �m�t ,�� solves simulta-
neously the Lax pair �2� and �3�, and the dynamical fields
Am�t� and Fm�t�, solutions of the nonlinear equations

dFm

dt
+ �mAm−1

2 = 0,
1

Am

dAm

dt
+

1

2
�mFm = 0, �4�

are related to the Toda field qm�t� in the following way:

Fm = −
dqm

dt
, Am = e�1/2��mqm. �5�

Indeed, from such a Lax pair, using a standard procedure
common to all soliton equations in �1+1� dimensions �see,
for instance, �1,22–24��, �i� one constructs the Darboux-

Bäcklund transformations �DBTs�, discrete symmetries of
Eqs. �1�–�3�, allowing one to generate recursively explicit
analytic solutions of �1�–�3�, from simpler analytic solutions;
�ii� one solves the Cauchy problem for the infinite and peri-
odic Toda chains, through, respectively, the inverse spectral
transform �IST� �22–24� and the finite-gap method �25–27�
applied to the eigenvalue problem �2�.

Motivated by the numerous applications of the Toda lat-
tice �1� and by its powerful integration scheme, we find it
important to construct integrable generalizations of the Toda
law �1� to regular planar lattices—i.e., to the square, triangu-
lar, and honeycomb lattices. To achieve this goal, one needs
to identify proper two-dimensional generalizations of the
one-dimensional self-adjoint spectral problem �2� associated
with �1�. Since �2� is an “integrable” discretization of the
one-dimensional stationary Schrödinger spectral problem
�where by integrable we now mean that the corresponding
operator admits, as its continuous counterpart, a large set of
continuous and discrete symmetries, like the Laplace and
Darboux transformations �DTs��, such a project requires the
identification of proper integrable discretizations of self-
adjoint second-order operators on the plane first. A key
progress in this direction was made in �28�, where it was
established that the self-adjoint scheme on the star of the
triangular lattice admits Laplace transformations, and in
�29,30�, where it was established that the self-adjoint
schemes on the stars of the square, triangular, and honey-
comb lattices admit DTs as their natural continuous counter-
parts. In addition, in �30�, a novel discrete time dynamics on
the triangular lattice was introduced, in connection with its
Laplace transformation. To construct integrable nonlinear dy-
namics associated with these self-adjoint operators, gauge
equivalent to the discrete Laplace equations on weighted
graphs, is the main goal of the paper.

It is necessary to mention that these three planar schemes
�on the square, triangular, and honeycomb lattices� are di-
rectly connected �see �31� and �30��, via the sublattice ap-
proach �31�, to the so-called discrete Moutard �32,33� �or
B-quadrilateral �34�� lattice in ZN, and therefore they are all
reductions of the multidimensional �planar� quadrilateral lat-
tice �35–38�. We also remark that the above three linear
schemes are distinguished examples of Laplace equations on
graphs, obtainable from the discrete Moutard equations on
bipartite planar quad-graphs �39–42�.
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Using the self-adjoint scheme on the star of the square
lattice as spectral problem, we have recently constructed in
�43� an integrable generalization of the Toda law on the
square lattice. In this paper we construct other examples of
integrable dynamics of Toda type on the square lattice, as
well as on the triangular lattice. More precisely, we first in-
troduce, using the self-adjoint scheme on the star of the
square lattice as spectral problem, the following nonlinear
dynamical system on the regular square lattice:

dFm,n

dt
+

1

�m,n
�m��m,n�m−1,nAm−1,n

2 �

+
1

�m,n
�n��m,n�m,n−1Bm,n−1

2 � = 0,

1

Am,n

dAm,n

dt
+

1

2
�1��m,nFm,n� = 0,

1

Bm,n

dBm,n

dt
+

1

2
�2��m,nFm,n� = 0,

Am,nBm,n��m,n + �m,n� = Am,n+1Bm+1,n��m+1,n+1 + �m+1,n+1� ,

Am,n+1Bm,n��m,n+1 − �m,n+1� = Am,nBm+1,n��m+1,n − �m+1,n� ,

�6�

corresponding to the Lax pair

Am,n�m+1,n + Am−1,n�m−1,n + Bm,n�m,n+1 + Bm,n−1�m,n−1

= Fm,n�m,n, �7a�

d�m,n

dt
=

�m,n

2
�Am,n�m+1,n − Am−1,n�m−1,n�

+
�m,n

2
�Bm,n�m,n+1 − Bm,n−1�m,n−1� , �7b�

where Am,n�t�, Bm,n�t�, Fm,n�t�, �m,n�t�, and �m,n�t� are dy-
namical functions on the square lattice and �m,n�� , t� is the
eigenfunction defined on its vertices.

Using instead the self-adjoint scheme on the star of the
triangular lattice as spectral problem, we introduce the fol-
lowing nonlinear dynamical system on the regular triangular
lattice:

dF

dt
+

1

�
�1���−1A−1

2 � +
1

�
�2���−2B−2

2 � +
1

�
�3���−3C−3

2 � = 0,

�8a�

1

A

dA

dt
+

1

2
�1��F� −

1

2

BC1

A
�� + ��2 +

1

2

B−3C−3

A
�� + ��−3 = 0,

�8b�

1

B

dB

dt
+

1

2
�2��F� +

1

2

A3C

B
�� − ��3 −

1

2

AC1

B
�� − ��1 = 0,

�8c�

1

C

dC

dt
+

1

2
�3��F� +

1

2

B−1A−1

C
�� + ��−1 −

1

2

A3B

C
�� + ��2 = 0,

�8d�

AB1�� − ��1 = A2B�� − ��2, �8e�

AC�� + �� = A3C1�� + ��2, �8f�

B−3C1�� − ��1 = BC−3�� − �� , �8g�

corresponding to the Lax pair

A�1 + A−1�−1 + B�2 + B−2�−2 + C�3 + C−3�−3 = F� ,

d�

dt
=

�

2
�A�1 − A−1�−1� +

�

2
�B�2 − B−2�−2�

+
�

2
�C�3 − C−3�−3� , �9�

where A, B, C, F, �, �, and � are dynamical functions on the
regular triangular lattice and ��� , t� is the eigenfunction de-
fined on its vertices. For Eqs. �8a�–�8g� and �9� we find it
convenient to use the concise notation f i=Tif , where Ti, i
=1,2 ,3, are the three elementary forward translation opera-
tors on the triangular lattice �such that T1T3=T2�, and f−i
=Ti

−1f .
In addition, we construct the natural reductions of the

systems �6� and �8a�–�8g�, we present their �-function for-
mulations, in which the � function of the BKP hierarchy �44�
plays a central role due to the already mentioned common
origin of the associated spectral problems, and we derive
their DBTs.

As most of the integrable multidimensional generaliza-
tions of soliton equation in �1+1� dimensions �45,46�, the
�2+1�-dimensional generalizations �6� and �8a�–�8g� of the
Toda law �1� are nonlocal, introducing the auxiliary fields �,
�, and � coupled to the main fields A, B, and C through
relations not involving t derivatives. In analogy with the
theory first developed in �47,48� for the Davey-Stewartson 1
�DS1� equation �49�, an integrable �2+1�-dimensional gen-
eralization of the celebrated nonlinear Schrödinger equation
�50�, well-posed initial-boundary value �IBV� problems for
�6� and �8a�–�8g� on the whole lattices, solvable by the IST
associated with the self-adjoint spectral problems �7a� and
�8a�, can be constructed. For instance, for the system �6� in
which the auxiliary fields ��+�� and ��−�� are constructed
along the two main diagonals of the square lattice from the
main fields A and B, one can assign arbitrarily �i� the main
fields A, B, and F at t=0 on the whole lattice, going to
constant values as m2+n2→	; �ii� the auxiliary field ��
+��, say, at the end 
=m+n=−	 of the main diagonal, as an
arbitrary function f+ of �=n−m and t; and �iii� the auxiliary
field ��−��, say, at the end �=−	 of the second diagonal, as
an arbitrary function f− of 
=m+n and t:
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�m,n�t� � �m,n�t� → fnm
� �t�, n � m → − 	 , �10�

where both fields f� are localized in the space variable. With
these prescriptions, one constructs well-defined functions
�m,n�t� and �m,n�t� in terms of A and B:

�m,n + �m,n = �
j=0

	 Am−1−j,n−1−jBm−1−j,n−1−j

Am−1−j,n−jBm−j,n−1−j

fn−m
+ �t� ,

�m,n − �m,n = �
j=0

	 Am+j,n−1−jBm+1+j,n−1−j

Am+j,n−jBm+j,n−1−j

fn+m
− �t� . �11�

Applying instead the finite-gap theory to the self-adjoint
spectral problems �7a� and �8a�, the periodic problem for the
systems �6� and �8a�–�8g� can be, in principle, investigated.

The paper is organized as follows. In Sec. II we construct
an integrable dynamics of Toda type on the square lattice,
invariant under � /2 rotation, its �-function formulation, and
its two natural reductions transforming into each other under
a � /2 rotation. One of these two reductions coincides with
the two-dimensional Toda system introduced in �43�. In Sec.
III we construct an integrable dynamics of Toda type on the
triangular lattice, invariant under a � /3 rotation, its
�-function formulation, and its natural reductions. The DBTs
for all the above systems are presented in Sec. IV.

II. DYNAMICS OF THE SQUARE LATTICE

In this section we construct examples of integrable dy-
namics of Toda type on the square lattice. To simplify the
form of the equations, we will be using the following nota-
tion: f instead of fm,n, f�1 instead of fm�1,n, f�2 instead of
fm,n�1, f�1�2 instead of fm�1,n�1, f�1�1 instead of fm�2,n,
and f�2�2 instead of fm,n�2. Moreover, we denote by T1 and
T2 the basic translation operators acting on the lattice—i.e.,
Tif = f i, i=1,2.

The dynamics wanted are associated with the linear self-
adjoint five-point scheme

A�1 + A−1�−1 + B�2 + B−2�−2 = F� �12�

on the star of the square lattice, involving its black center
��� and the four vertices of the star, denoted by the symbol
� in Fig. 1. In the spectral problem �12�, the eigenfunction
� is defined at the vertices of the graph, while the fields A ,B
are defined on the nonoriented edges of the lattice. Equation
�12�, a natural discretization of the self-adjoint second-order
equation

�a�x�x + �b�y�y = f� , �13�

admits, like its continuous counterpart, DTs �29�.
In analogy with Eq. �3�, we restrict our investigation to

evolution equations for the eigenfunction � involving only
the four vertices � of the five-point scheme:

d�

dt
= ��1 + ��−1 + ��2 + ��−2, �14�

where the fields �, �, �, and �, defined on the oriented edges
of the lattice, will be specified in the following. A term pro-

portional to � in �14� can always be expressed, using �12�, in
terms of the values of � at the four vertices � of the star;
therefore, it is omitted.

We remark that, due to the � /2-rotation symmetry of the
square lattice, under which the two basic translations T1 and
T2 transform as

T1 → T̃1 = T2, T2 → T̃2 = T1
−1, �15�

the coefficients of the five-point scheme and of the evolution
equation �14� are subjected to the following transformations:

A → Ã = B, B → B̃ = A−1, F → F̃ = F ,

� → �̃ = �, � → �̃ = �, � → �̃ = �, � → �̃ = � .

�16�

The compatibility between Eqs. �12� and �14� leads to an
equation involving the values of � at all the marked points
�, �, �, and x in Fig. 1. Using the scheme �12� centered at
the origin and at the points �, one expresses the values of �
at the origin and at the points x in terms of the eight inde-
pendent values of � at the points � and �. As a result of
this procedure, the compatibility condition becomes a linear
equation for the eight independent values of � at the points
� and �. Equating to zero their eight coefficients, one ob-
tains a determined system of eight nonlinear equations for
the eight coefficients A, B, C, F, �, �, �, and �.

In the rest of this section we report the results of the
analysis of such system leading to Toda-type dynamics.

A. Rotationally invariant dynamics

Setting

� =
�

2
A, � = −

�

2
A−1, � =

�

2
B, � = −

�

2
B−2, �17�

where � and � are lattice fields to be specified, the corre-
sponding evolution for �,

T2

A−1

B−2

T1

x

x

x

x A

B

FIG. 1. The square lattice and the points involved in the
commutation.
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d�

dt
=

�

2
�A�1 − A−1�−1� +

�

2
�B�2 − B−2�−2� , �18�

is compatible with the five-point scheme �12� iff �up to a
trivial gauge transformation� the coefficients A, B, F, �, and
� satisfy the following determined system of five nonlinear
equations:

dF

dt
+

1

�
�1���−1A−1

2 � +
1

�
�2���−2B−2

2 � = 0, �19�

1

A

dA

dt
+

1

2
�1��F� = 0,

1

B

dB

dt
+

1

2
�2��F� = 0, �20�

AB�� + �� = A2B1�� + ��12, A2B�� − ��2 = AB1�� − ��1.

�21�

Equations �20� suggest the introduction of the new fields q ,r
defined by

dq

dt
= − �F,

dr

dt
= − �F . �22�

With this choice:

A = ae�1/2��1q, B = be�1/2��2r, �23�

where a and b are arbitrary constants. Choosing, without loss
of generality, a ,b=1, the system �19�–�21� takes the form of
the following novel integrable generalization of the Toda ex-
ponential law of interaction to the square lattice:

��
d

dt
�1

�

dq

dt
� = ��1���−1e�1q−1� + ��2���−2e−�2r−2� ,

�24a�

�
dr

dt
= �

dq

dt
, �24b�

�� + ��
�� + ��12

= e�1�2�q+r�/2, �24c�

�� − ��1

�� − ��2
= e�1�2�q−r�/2. �24d�

Remark 1. In the natural one-dimensional limit in which
all the fields are invariant under the T2 translation, Eqs. �24c�
and �24d� imply that � and � are constant, and Eq. �24a�
reduces to the one-dimensional Toda lattice �1�.

Remark 2. Using �23� with a=b=1, the five-point scheme
�12� takes the following form:

�

�1
�1 +

�−1

�
�−1 +

�̂

�̂2

�2 +
�̂−2

�̂
�−2 = F� ,

� = e−q/2, �̂ = e−r/2. �25�

It is easy to verify that the spectral problem �25� reduces, in
the natural continuous limit, to the stationary Schrödinger

equation in the plane: �xx+�yy +u�=0. It is therefore a
natural integrable discretization of the Schrödinger operator,
more general than that introduced in �29�.

Remark 3. Using �15�–�17� and �22�, it is easy to verify
that, under a � /2 rotation,

� → �� = �, � → �� = − �, q → q� = r, r → r� = − q ,

�26�

from which it follows that the system �19�–�21� �or
�24a�–�24d�� is invariant under this transformation.

B. Reductions not invariant under rotation

The system �19�–�21� �or �24a�–�24d�� admits two distin-
guished reductions for �= ��.

�i� The reduction �=�. In this case, the Lax pair �12� and
�18� reduces to

A�1 + A−1�−1 + B�2 + B−2�−2 = F� ,

d�

dt
=

�

2
�A�1 − A−1�−1 + B�2 − B−2�−2� , �27�

and the nonlinear dynamics �19�–�21� reduces to

dF

dt
+

1

�
��1���−1A−1

2 � + �2���−2B−2
2 �� = 0, �28a�

1

A

dA

dt
+

1

2
�1��F� = 0,

1

B

dB

dt
+

1

2
�2��F� = 0, �28b�

AB� = A2B1�12. �28c�

Integrating Eqs. �28b� and �28c� and using �22�, which im-

plies that r=q��̂=��, one recovers the Toda-type system

�
d

dt
�1

�

dq

dt
� = �1���−1e�1q−1� + �2���−2e�2q−2� ,

�

�12
= e�1�2q, �29�

introduced in �43�, whose associated five-point scheme is the
discrete Schrödinger equation

�

�1
�1 +

�−1

�
�−1 +

�

�2
�2 +

�−2

�
�−2 = F� ,

A =
�

�1
, B =

�

�2
, � = e−q/2, F = −

q

�
, �30�

introduced in �29�.
�ii� The reduction �=−�. In this case, the time evolution

of � reads

d�

dt
=

�

2
�A�1 − A−1�−1 − B�2 + B−2�−2� , �31�

and the nonlinear dynamics �19�–�21� reduces to:

dF

dt
+ �1A2 − �−1A−1

2 − �2B2 + �−2B−2
2 = 0,
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1

A

dA

dt
+

1

2
�1��F� = 0,

1

B

dB

dt
−

1

2
�2��F� = 0,

A2B�2 = AB1�1. �32�

Equivalently, using �22� and noting that, in this case,

r=−q��̂=1 /��, one obtains the Toda-type system

�
d

dt
�1

�

dq

dt
� = �1���−1e�1q−1� − �2���−2e−�2q−2� ,

�1

�2
= e�1�2q, �33�

whose five-point scheme is another variant of the discrete
Schrödinger equation

�

�1
�1 +

�−1

�
�−1 +

�2

�
�2 +

�

�−2
�−2 = F� . �34�

We end this section remarking that, due to the transforma-
tions �16� and �26�, the reduced systems �29� and �33� trans-
form into each other under a � /2 rotation.

C. �-function formulations

Motivated by the sublattice approach �31� for the self-
adjoint five-point scheme �12�, we introduce two potentials �
and �̂ via the equations

A =
�1�

�̂�̂−2

, B =
�2�

�̂�̂−1

. �35�

These allow to resolve the algebraic part �21� of the system
�19�–�21�, with the fields � and � expressed as follows:

� =
�̂−1�̂−2 + �̂−1−2�̂

2�2 , � =
�̂−1�̂−2 − �̂−1−2�̂

2�2 . �36�

Then the remaining equations �19� and �20� form a system of
three equations for three fields �, �̂, and F :

4
d

dt
�ln

�1�

�̂�̂−2
� + �1�F� �̂−1�̂−2

�2 +
�̂−1−2�̂

�2 �	 = 0,

4
d

dt
�ln

�2�

�̂�̂−1
� + �2�F� �̂−1�̂−2

�2 −
�̂−1−2�̂

�2 �	 = 0,

2

�2

dF

dt
+

1

�̂�̂−2
� �̂1−2

�̂−2

+
�̂1

�̂
� −

1

�̂−1�̂−1−2
� �̂−1−1

�̂−1

+
�̂−1−1−2

�̂−1−2
�

+
1

�̂�̂−1
� �̂−12

�̂−1

−
�̂2

�̂
� −

1

�̂−2�̂−1−2
� �̂−2−2

�̂−2

−
�̂−1−1−2

�̂−1−2
� = 0.

Introduction of the fields q and r �or � and �̂�, which allowed
us to simplify Eqs. �20�, suggests the introduction of yet

other potentials h and ĥ such that

�2 =
ĥ1ĥ2

hh12
, �̂ = � ĥ

h
�

12
. �37�

It follows that

�2 =
h12ĥ2

hĥ1

, �̂2 =
h12ĥ1

hĥ2

, �38�

and that Eqs. �21� are identically satisfied, with the fields �
and � given as follows:

� =
1

2� hh12

h1h2
+

ĥĥ12

ĥ1ĥ2

�, � =
1

2� hh12

h1h2
−

ĥĥ12

ĥ1ĥ2

� . �39�

Moreover, Eqs. �20� reduce to two equivalent expressions for
F,

h1h2

hh12

d

dt�ln
h12

h � =
ĥ1ĥ2

ĥĥ12

d

dt�ln
ĥ2

ĥ1

� =
F

2
, �40�

while Eq. �21� reads

4
d

dt� h1h2

hh12

d

dt�ln
h12

h �	 + �hĥ1

h1ĥ
+

h2ĥ12

h12ĥ2

�
1

h1ĥ2

hĥ12

− �h1ĥ

hĥ1

+
h12ĥ2

h2ĥ12

�
−1

h2ĥ1

h12ĥ
+ �hĥ2

h2ĥ
−

h1ĥ12

h12ĥ1

�
2

h2ĥ1

hĥ12

− �h12ĥ1

h1ĥ12

−
h2ĥ

hĥ2

�
−2

h1ĥ2

h12ĥ
= 0. �41�

Therefore the introduction of the potentials h and ĥ allows
one to rewrite the Toda-like system �19�–�21� as a coupled
nonlinear system of two equations �the first equation of �40�
and Eq. �41��.

III. DYNAMICS ON THE TRIANGULAR LATTICE

In this section we construct some examples of integrable
dynamics of Toda type on the regular triangular lattice. We
recall that, on the triangular lattice, the three main transla-
tions T1, T2, and T3 in the directions 1, 2, and 3 are not
independent, being connected by the relation

T1T3 = T2, �42�

and hence f3= f−12 and f−3= f1−2.
The integrable dynamics of Toda type are associated with

the linear and self-adjoint seven-point scheme

A�1 + A−1�−1 + B�2 + B−2�−2 + C�3 + C−3�−3 = F�

�43�

on the star of the triangular lattice, involving the black center
� and the six vertices denoted by the symbol � in Fig. 2. In
the spectral problem �43�, the eigenfunction � is defined at
the vertices of the graph and the fields A, B, and C are
defined on the non oriented edges of the lattice. Equation
�43�, a natural discretization of the most general self-adjoint
second-order equation on the plane,

�a�x�x + �b�y�y + �c�x�y + �c�y�x = f� , �44�

admits, like its continuous counterpart, DTs �29�.
As in the previous section, we restrict our investigation to

evolution equations for � involving only the six points � of
the seven-point scheme:
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d�

dt
= ��1 + ��−1 + ��2 + ��−2 + ��3 + ��−3. �45�

We remark that the regular triangular lattice possesses a
� /3-rotation symmetry, under which the three basic transla-
tions transform as follows:

T1 → T̃1 = T2, T2 → T̃2 = T3, T3 → T̃3 = T1
−1. �46�

Correspondingly, the coefficients of the seven-point scheme
�43� and of the evolution equation �45� transform as follows:

A → B, B → C, C → A−1,

� → �̃ = �, � → �̃ = �, � → �̃ = �, � → �̃ = � ,

� → �̃ = �, � → �̃ = � . �47�

We proceed adopting the same strategy as in the previous
section. The compatibility between Eqs. �43� and �45� leads
to an equation involving the values of � at all the 19 marked
points in Fig. 2. Using the scheme �43� centered at the origin
and at the points �, one expresses the values of � at the
origin and at the points x in terms of the 12 values of � at
the points � and �. As a result of this procedure, the com-
patibility condition becomes a linear equation for the 12 in-
dependent values of � at the points � and �. Equating to
zero their 12 coefficients, one obtains an overdetermined sys-
tem of 12 nonlinear equations for the 10 coefficients A, B, C,
F, �, �, �, �, �, and �. It turns out that, due to the relation
�42� among the three main shifts, such overdeterminacy is
resolved and one can construct integrable nontrivial dynam-
ics.

In the rest of this section we report the results of such
analysis, leading to the Toda-type dynamics on the triangular
lattice.

A. Rotationally invariant dynamics

Setting

� =
�

2
A, � = −

�

2
A−1, � =

�

2
B, � = −

�

2
B−2,

� =
�

2
C, � = −

�

2
C−3, �48�

where �, �, and � are lattice fields to be specified, the corre-
sponding evolution for �,

d�

dt
=

�

2
�A�1 − A−1�−1� +

�

2
�B�2 − B−2�−2�

+
�

2
�C�3 − C−3�−3� , �49�

is compatible with the seven-point scheme �43� iff the coef-
ficients A, B, C, F, �, �, and � satisfy the following deter-
mined system of seven nonlinear equations:

dF

dt
+

1

�
�1���−1A−1

2 � +
1

�
�2���−2B−2

2 � +
1

�
�3���−3C−3

2 � = 0,

�50�

1

A

dA

dt
+

1

2
�1��F� −

1

2

BC1

A
�� + ��2 +

1

2

B−3C−3

A
�� + ��−3 = 0,

�51a�

1

B

dB

dt
+

1

2
�2��F� +

1

2

A3C

B
�� − ��3 −

1

2

AC1

B
�� − ��1 = 0,

�51b�

1

C

dC

dt
+

1

2
�3��F� +

1

2

B−1A−1

C
�� + ��−1 −

1

2

A3B

C
�� + ��2 = 0,

�51c�

AB1�� − ��1 = A2B�� − ��2, �52a�

AC�� + �� = A3C1�� + ��2, �52b�

B−3C1�� − ��1 = BC−3�� − �� . �52c�

We remark that, due to three algebraic equations �52a�–�52c�,
the three equations �51a�–�51c� can be rewritten in the fol-
lowing conservationlike form:

d

dt
�ln A2� + �1��F� − �2�B−2C−3

A−2
�� − ���

− �3�B−3C−3

A
�� + ��−3� = 0,

d

dt
�ln B2� + �2��F� + �3�AC−3

B−3
�� − ���

− �1�A−1C

B−1
�� − ��� = 0,

T1

T2
T3

A−1

B−2 C−3

x

xx

x x

x A

C B

FIG. 2. The triangular lattice and the points involved in the
commutation.
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d

dt
�ln C2� + �3��F� − �1�A−1B−1

C
�� + ��−1�

− �2�A−1B−2

C−2
�� − ��� = 0. �53�

Remark 4. Under the transformation �47�, the coefficients
�, �, and � transform as follows:

� → �̃ = �, � → �̃ = �, � → �̃ = − � , �54�

and, as is easy to verify, the nonlinear system �50�, �51a�–
�51c�, and �52a�–�52c� is invariant under a � /3 rotation.

Remark 5. Like the Toda-system �19�–�21� on the square
lattice, also the nonlinear system �50�, �51a�–�51c�, and
�52a�–�52c� is nonlocal, due to the three equations
�52a�–�52c�, in which the auxiliary fields ��−��, ��+��, and
��−�� are constructed, from the knowledge of the main
fields A, B, and C, along the three main directions 1, 2, and
3 of the triangular lattice. Therefore well-posed IBV prob-
lems for the system �50�, �51a�–�51c�, and �52a�–�52c� of the
type discussed in the Introduction can be solved using the
IST and finite-gap methods associated with the spectral prob-
lem �43�.

B. Reductions not invariant under rotation

The nonlinear system �50�, �51a�–�51c�, and �52a�–�52c�
admits the reductions ��=��, ��=��, and ��=−�� and the
following combinations of them: ��=� , �=��, ��=� , �
=−��, and ��=� , �=−��. They give rise to six integrable
dynamics on the triangular lattice. It follows that these dy-
namics are not rotationally invariant, but they transform one
into the other in the way summarized in Fig. 3.

We write down explicitly the two reductions ��=�� and
��=� , �=��, since all the others can be generated from
them through rotations.

The reduction �=�. In this case, the evolution of � reads

d�

dt
=

�

2
�A�1 − A−1�−1 + B�2 − B−2�−2�

+
�

2
�C�3 − C−3�−3� , �55�

and the nonlinear system �50�, �51a�–�51c�, and �52a�–�52c�
reduces to the six equations

dF

dt
+

1

�
��1���−1A−1

2 � + �2���−2B−2
2 �� +

1

�
�3���−3C−3

2 � = 0,

d�ln A2�
dt

+ �1��F� − �3�B−3C−3

A
�� + ��−3� = 0,

d�ln B2�
dt

+ �2��F� + �3�AC−3

B−3
�� − ��� = 0,

d�ln C2�
dt

+ �3��F� − �1�A−1B−1

C
�� + ��−1�

− �2�A−1B−2

C−2
�� − ��� = 0,

AC�� + �� = A3C1�� + ��2,

B−3C1�� − ��1 = BC−3�� − �� . �56�

The reduction ��=� , �=��. In this case, the evolution of
� reads

d�

dt
=

�

2
�A�1 − A−1�−1 + B�2 − B−2�−2 + C�3 − C−3�−3� ,

�57�

and the nonlinear system �50�, �51a�–�51c�, and �52a�–�52c�
reduces to the five equations

�
dF

dt
+ �1���−1A−1

2 � + �2���−2B−2
2 � + �3���−3C−3

2 � = 0,

�58a�

d�ln A2�
dt

+ �1��F� − 2�3�B−3C−3

A
�−3� = 0, �58b�

d�ln B2�
dt

+ �2��F� = 0, �58c�

d�ln C2�
dt

+ �3��F� − 2�1�A−1B−1

C
�−1� = 0, �58d�

AC� = A3C1�2. �58e�

In analogy with the previous examples on the square lattice,
Eqs. �58b�–�58d� suggest the introduction of the new fields q,
�, and � defined by

=ηξ

ξ =

−

−ζ

=ζη

ξ =η
η=ζ

η=ζ
ξ =−ζ

ξ =η
ξ =−ζ

Invariant

system

FIG. 3. �Color online� The bold arrows describe the six reduc-
tions of the rotationally invariant system. The dashed arrows de-
scribe how such reductions transform one into the other, under a
� /3 rotation.
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dq

dt
= − �F,

d�

dt
= − 2

BC

A3
�,

d�

dt
= − 2

AB

C1
� . �59�

With this choice,

A = ae�1/2���1q−�3�−3�, B = be�1/2��2q, C = ce�1/2���3q−�1�−1�,

�60�

where a, b, and c are arbitrary constants. Choosing, without
lost of generality, a ,b ,c=1, the system �58a�–�58e� can be
rewritten in the following Toda-like form:

�
d

dt
�1

�

dq

dt
� + �1���−1e�1q−1+�−2−r−1� + �2���−2e�2q−2�

+ �3���−3e�3q−3+�−2−�−3� = 0,

d�

dt
= − 2�e�3�q+�/2�−�1/2��1�−1,

d�

dt
= − 2�e�1�q+�/2�−�1/2��3�−3,

�2 = �eq3−q2+q1−q+�1/2���1
2�−1+�3

2�−3�. �61�

C. Reductions to dynamics on the Z2 graph

We remark that the reduction �=�, �=� is compatible
with the condition B=0, for which all the connections in
direction 2 are broken and the triangular lattice reduces to the
rhombic lattice in Fig. 4�a�. Then direction 2 should be re-
named 13 and the system �58a�–�58e� becomes the integrable
system �28a�–�28c� on the rhombic lattice of Fig. 4�a� �on the
Z2 graph�.

Analogously, it would be possible to show, for example,
that the reduction �=−�=−� is compatible with the condi-
tion C=0, for which all the connections in direction 3 are
broken and the triangular lattice reduces to the rhombic lat-
tice in Fig. 4�b�. The system obtained in this case is the
integrable system �32� on such a rhombic lattice.

D. �-function formulations

Motivated by the sublattice approach �30� for the self-
adjoint seven-point scheme �43�, we introduce three poten-
tials �, �̂, and �̌ such that

A =
��1

�̂�̌2

, B =
��2

�̂3�̌2

, C =
��3

�̂3�̌3

. �62�

The algebraic part �52a�–�52c� of the nonlinear system �50�,
�51a�–�51c�, and �52a�–�52c� is then resolved by the param-
etrization

� =
1

2�2 ��̌3�̂ + �̌2�̂−1 + �̌�̂3� ,

� =
1

2�2 ��̌3�̂ − �̌2�̂−1 + �̌�̂3� ,

� =
1

2�2 ��̌3�̂ − �̌2�̂−1 − �̌�̂3� . �63�

The remaining part of the system gives a system of four
equations for the four fields F, �, �̌, and �̂.

IV. DARBOUX-BÄCKLUND TRANSFORMATIONS

In this section we present the DBTs for the above Toda-
type systems. It is well-known that they allow one to con-
struct, through an elementary procedure, explicit analytic so-
lutions of the above Toda-type systems from simpler
solutions.

A. DBTs for the Toda-type system on the square lattice

The Lax pair �12� and �18� is covariant under the Darboux
transformation

��,A, . . . ,�� � ��̃,Ã, . . . ,�̃� �64�

given by the linear system

�2�K�̃� = − A−1��−1�−1��

�
� ,

0 1

3 13

−1

−3−1−3

0−1

2 12

1−2−2

1

FIG. 4. �Color online� �a� The rhombic lattice for B=0. �b� The rhombic lattice for C=0.
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�1�K�̃� = B−2��−2�−2��

�
� ,

d

dt
�K�̃� = �−1�−2A−1B−2

�� + ��
2

���

�
�

−2
− ��

�
�

−1
	

+ ��−1−2A−1B−1−2
��−1 − �−1�

2
���

�
�

−1−2
−

�

�
	 ,

�65�

where � is a particular solution of �12�; the gauge function K
must obey

1

K

dK

dt
+ ��−1A−1 + �−2B−2�

� + �

4�
− ��−2A−1−2 + �−1B−1−2�

�
�� + ��−1−2

4�−1−2
+ ��−1−2A−1−2 + �B−2�

�� − ��−2

4�−2

− ��A−1 + �−1−2B−1−2�
�� − ��−1

4�−1
= 0, �66�

and the transformation of the other fields is given by

Ã =
KK1

B−2��−2
,

B̃ =
KK2

A−1��−1
,

F̃ = K2� 1

A−1�−1�
+

1

A−1−2�−1−2�−2

+
1

B−2�−2�
+

1

B−1−2�−1−2�−1
� ,

�̃ − �̃ =
�−1−2�

K2 A−1B−1−2�� − ��−1,

�̃ + �̃ =
�−1�−2

K2 A−1B−2�� + �� . �67�

So the formulas �67� are the Bäcklund transformations �BTs�
for the Toda-type system �19�–�21� on the square lattice; i.e.,

Ã, B̃, F̃, �̃, and �̃ compose a new solution of �19�–�21�. On
the level of the � functions the transformation is given as

� � K�̂−1−2, �̂ � �� . �68�

We remark that, for �= ��, the above transformations be-
come the DBTs for the reduced systems �28a�–�28c� and
�32�.

The spatial parts of the above DBTs were already written
in �29�; the temporal parts, describing the time dependence

of the transformed solution �̃ and the transformation law for
the coefficient �, �, and �, are new ingredients of this paper.

B. DBTs for the Toda-type system
on the triangular lattice

First, for aesthetical reasons, we introduce function

S: = C−2.

The Lax pair �43� and �49� is covariant under the Darboux
transformation

��,A, . . . ,�� � ��̃,Ã, . . . , �̃� �69�

given by the linear system

�1�K�̃� = − B−2�−2� − S�−2�−1 + �B−2� + S�−1��−2, �70a�

�2�K�̃� = A−1�−1� − �A−1� + S�−2��−1 + S�−1�−2, �70b�

d

dt
�K�̃� = −

1

2

�−1−2A−1B−1−2�� − ��−1� + �−2A−1−1S�� + ��−1�−1−1 − �−1B−2−2S�� − ��−2�−2−2

+ �P−2B−1−2

B−2−2
�� − ��−1−2 + �−1−2SA−1−2�� − ��−2 + �−2A−1−2B−1−2�� + ��−1−2	�−1

− �P−1A−1−2

A−1−1
�� + ��−1−2 − �−1−2SB−1−2�� − ��−1 + �−1A−1−2B−1−2�� − ��−1−2	�−2

− �PB−1−2

B−2
�� − ��−1 − �−2SB−1−2�� + ��−1 + �−1SA−1−2�� − ��−2	�−1−2� , �70c�

where � is a particular solution of the Lax pair �43� and �49�, P is given by

P: = �A−1B−2 + �−1A−1S + �−2B−2S ,

and K is given by the quadrature
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1

K

dK

dt
=

− 1

4

P�−1−2

B−1−2

B−2
�� − ��−1� A−1

�−2P
−

A−1−1

�−1−2P−1
−

B−2

�−1P
+

B−2−2

�−1−2P−2
−

S−1

�−1P−1
+

S−2

�−2P−2
	

+ P−1�−2
A−1−2

A−1−1
�� + ��−1−2� A−1

�−2P
−

A−1−1

�−1−2P−1
+

B−2

�−1P
−

B−2−2

�−1−2P−2
+

S−1

�−1P−1
−

S−2

�−2P−2
	

+ P−2�−1
B−1−2

B−2−2
�� − ��−1−2� A−1

�−2P
−

A−1−1

�−1−2P−1
+

B−2

�−1P
−

B−2−2

�−1−2P−2
−

S−1

�−1P−1
+

S−2

�−2P−2
	� . �71�

The new eigenfunction �̃ is a solution of the Lax pair �43�
and �49� with the new coefficients

Ã =
KK1

�−2P
A−1, �72a�

B̃ =
KK2

�−1P
B−2, �72b�

S̃ =
K−1K−2

�−1−2P−1−2
S−1−2, �72c�

F̃ = K2� A−1

�−2P
+

A−1−1

�−1−2P−1
+

B−2

�−1P

+
B−2−2

�−1−2P−2
+

S−1

�−1P−1
+

S−2

�−2P−2
� , �72d�

�̃ − �̃ =
PB−1−2�−1−2

K2B−2
�� − ��−1, �72e�

�̃ + �̃ =
P−1S�−2

K2S−1
�� + ��−1, �72f�

�̃ − �̃ =
P−2S�−1

K2S−2
�� − ��−2. �72g�

Therefore formulas �72a�–�72g� constitute the BTs for the
Toda type system �50�, �51a�–�51c�, and �52a�–�52c� on the
triangular lattice.

We would like to mention that Eqs. �70a� and �70b� can
be easily inverted:

�−1
�

�
= B̃

1

K2
�̃ + S̃12

1

K2
�̃1 − �B̃

1

K
+ S̃12

1

K1
��2,

�−2
�

�
= − Ã

1

K1
�̃ − S̃12

1

K1
�̃2 + �Ã

1

K
+ S̃12

1

K2
��1.

�73�

In addition, Eqs. �71� and �72d� can be rewritten by means of
“new” solutions as follows

d

dt
� 1

K
� =

1

2
��̃� Ã

K1
−

Ã−1

K−1
� + �̃� B̃

K2
−

B̃−2

K−2
�

+ �̃� S̃2

K−12
−

S̃1

K1−2
�	 Ã

K1
+

Ã−1

K−1

+
B̃

K2
+

B̃−2

K−2
+

S̃2

K−12
+

S̃1

K1−2

=
F̃

K
;

i.e., 1
K is eigenfunction of the tilded Lax pair.

On the level of the � functions, the transformation is given
as follows:

� � K�̌−1, �̂ � �−2�−2,

�̌ � ����̌−1 + �−1�−1�̌ + �−2�−2�̌3

�̂−1
�

−2

. �74�

As before, the DBTs �72a�–�72g� are consistent with all the
reductions of the Toda-type system �50�, �51a�–�51c�, and
�52a�–�52c�.

The spatial parts of the above DBTs were already written
in �29�; the temporal parts, describing the time dependence

of the transformed solution �̃, and the transformation law
for the coefficient �, �, and � are new ingredients of this
paper.

V. CONCLUSIONS AND FUTURE PERSPECTIVES

In this paper we have constructed integrable dynamics of
Toda type on the square and triangular lattices, as nonlinear
symmetries of the discrete Laplace equations on the square
and triangular lattices, together with their �-function formu-
lations and their DBTs.

The integrability of these dynamics manifests in this pa-
per in the construction of their basic integrability schemes:
the Lax pair and the corresponding DBTs. A systematic use
of these DBTs to construct recursively analytic solutions,
together with the use of the IST and finite-gap methods to
solve IBV problems of the type discussed in the Introduction,
are presently under investigation. The interested reader can
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already see how the DBTs of the type derived in this paper
allow one to construct recursively analytic solutions, on the
illustrative example presented in �43�. No transparent physi-
cal application for these new systems is known, at the mo-
ment.

Due to the intimate connections between the self-adjoint
schemes on the triangular and honeycomb lattices �30�, it
is possible, in principle, to construct integrable Toda-type
dynamics on the honeycomb lattice from those on the trian-
gular lattice. This project will be developed elsewhere. An-
other interesting problem for future research is to establish
connections between these Toda-like systems and the corre-
sponding Lotka-Volterra systems �see, e.g., �51,52��, as well
as the connection, via the sublattice approach, between these

Toda-like systems and the integrable dynamics on the dis-
crete Moutard lattice introduced in �53�.
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